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Abstract
After a short review of the history and problems of relativistic Hamiltonian
mechanics with action-at-a-distance inter-particle potentials, we study isolated
two-body systems in the rest-frame instant form of dynamics. We give explicit
expressions of the relevant relativistic notions of center of mass, we determine
the generators of the Poincare’ group in presence of interactions and we show
how to do the reconstruction of particles’ orbits from the relative motion and the
canonical non-covariant center of mass. In the case of a simple Coulomb-like
potential model, it is possible to integrate explicitly the relative motion and
show the two dynamical trajectories.

PACS numbers: 45.20.Jj, 03.30.+p, 45.50.Pk

1. Introduction

In Newtonian mechanics, the two-body problem is completely understood both in configuration
and in phase space. The notions of absolute time and absolute space allow us to describe the
two particles of mass mi, i = 1, 2, with Euclidean position 3-vectors �xi and momenta �pi in an

inertial frame. For an isolated two-body system the Hamiltonian H = ∑2
i=1

�p2
i

2mi
+V (|�x1 −�x2|)

is the energy generator of the kinematical Galilei group, whose other generators are all
interaction independent. With the point (both in coordinate and in momenta) canonical
transformation �x = m1�x1+m2�x2

m1+m2
, �p = �p1 + �p2, �r = �x1 − �x2, �q = 1

2 (�p1 − �p2) we can separate the
decoupled center of mass from the relative motion: the new Hamiltonian is H = Hcom + Hrel

with Hcom = �p2

2m
(m = m1 + m2) and Hrel = �q2

2µ
+ V (|�r|) (µ = m1m2

m
). The relative

Hamiltonian Hrel governs the relative motion and, when its Hamilton equations have been
solved, the trajectories of the particles are obtained with the inverse canonical transformation
�x1 = �x + m2

m1+m2
�r, �x2 = �x − m1

m1+m2
�r, �p1 = 1

2 �p + �q, �p2 = 1
2 �p − �q. As a consequence the
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non-relativistic theory of orbits, for either 2 or N particles, is well understood and developed
(see, for instance, [1]).

By contrast, in special relativity, where only Minkowski spacetime is absolute, where
there is no absolute notion of simultaneity and where inertial frames are connected by the
transformations generated by the kinematical Poincare’ group, the situation is extremely
more complicated and till now there is no complete self-consistent theory of orbits even for
the two-body case. This is due to the facts that

(i) the particles’ locations and momenta are now 4-vectors x
µ

1 , p
µ

1 , x
µ

2 , p
µ

2 ,;

(ii) the momenta are not independent, but must satisfy mass-shell conditions (since a
relativistic particle is an irreducible representation of the Poincare’ group with mass
mi and a value of the spin (only scalar particles will be studied in this paper));

(iii) a simultaneity convention (for instance, Einstein’s one identifying inertial frames) for the
synchronization of distant clocks has to be introduced, so that the time components xo

i

are not independent;

(iv) the inter-particle interaction potentials appear in the boosts as well as in the energy
generator;

(v) the structure of the Poincare’ group implies that there is no definition of a relativistic
4-center of mass sharing all the properties of the non-relativistic 3-center of mass.

Since a clarification of all these problems has recently been obtained [2], and since it is
not well known the extent to which consistent relativistic action at a distance (a-a-a-distance)
theories have been developed, we want to illustrate these developments by using a simple
two-body system with a scalar action-at-a-distance (a-a-a-d) interaction, for which a closed
Poincare’ algebra can be found in the rest-frame instant form of dynamics, as an example. By
using the relativistic generalization [2] of the above quoted non-relativistic canonical basis,
we will show that the potential appearing in the energy Hamiltonian (as with Hrel) determines
the relative motion, while the potentials appearing in the Lorentz boosts (which disappear in
the non-relativistic limit), together with the notion of the canonical non-covariant 4-center of
mass, contribute to the reconstruction of the actual orbits of the two particles.

As a consequence for the first time we have full control on the relativistic theory of orbits
and we can start to reformulate at the relativistic level the properties of the Newtonian theory
of orbits.

In section 2, we give a brief history of the problems that have arisen in past attempts
to define Hamiltonian relativistic mechanics with emphasis on several developments that are
particularly relevant to the two-body problem discussed here. These developments include
the instant form of dynamics with its two (external and internal) realizations of the Poincare’
algebra, the three intrinsic notions of relativistic collective center-of-mass-like variables in both
the realizations and the relativistic extension of the non-relativistic canonical transformation
implementing the separation of the center of mass from the relative variables and how this can
be used in general to do the reconstruction of particles’ orbits from the relative motion and
the canonical non-covariant center of mass. In section 3 there is the study of a simple two-
body model with a-a-a-distance interaction which correctly reproduces the Poincare’ algebra
including potential-dependent boosts and energy generators, while in section 4 there is the
determination of its orbits with an explicit integration of its equations of motion. A final
discussion on the relativistic theory of orbits with its avoidance of the no-interaction theorem
is given in the concluding section 5. Finally, in appendix A there is a review of the two-body
models with first class constraints. A more detailed and historical discussion is given in a
longer version of this paper in the archives [3].
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2. Brief history of Hamiltonian relativistic mechanics and recent developments

Relativistic classical particle mechanics with a-a-a-d interactions and its Hamiltonian
counterpart arose as an approximation to interactions with a finite time delay (like the electro-
magnetic one) and have been quite useful in the treatment of relativistic bound states with an
instantaneous approximation of the kernels of field-theoretic equations like the Bethe–Salpeter
equation. The starting points for Hamiltonian relativistic particle mechanics were the instant,
front and point forms of relativistic Hamiltonian dynamics proposed by Dirac [4] (see also
[5, 6]). This approach was an attempt to find canonical realizations of the Poincare’ algebra
such that some of the generators, called Hamiltonians (the energy and the boosts in the instant
form), are not the direct sum of the corresponding ones for free particles.

The main obstacle in the development of models was the Currie–Jordan–Sudarshan no-
interaction theorem [7], whose implication was the impossibility in theories with interactions
for the canonical particle 4-positions to be 4-vectors, when their time components are put
equal to the time of the reference inertial frame.

From numerous studies [8–14] it has become clear that relativistic particle mechanics
has to be formulated by using Dirac’s theory of constraints [15]1: there must be as many
mass-shell first class constraints (containing the potentials of the mutual interactions among
the particles) as particles. The first consistent two-body model with two first class constraints
depending upon a suitable potential was found by Droz-Vincent [16], Todorov [17] and Komar
[18] simultaneously and independently (see appendix A; for N � 3 a closed form of the N first
class constraints is not known). These studies led to the following problems, directly relevant
to this paper.

(a) The study of two (more generally N)-particle configurations with a one-to-one correlation
among the worldlines. This can be done by adding gauge fixing constraints, so that only
the combination of the original constraints describing the mass spectrum of the global
system of particles remains first class (moreover, there are N − 1 pairs of second class
constraints). Kalb and Van Alstine [19] and the authors of [20] developed consistent two-
body models with second class constraints. The avoidance of the relative times in these
models has been recently re-interpreted in [21] as the problem of the synchronization of
the clocks associated to the individual particles.

(b) The identification of canonical bases containing a relativistic 4-center of mass and
relativistic relative variables starting from the original canonical 4-vectors x

µ

1 , p
µ

1 , x
µ

2 , p
µ

2 .
This was a highly non-trivial problem due to the lack of a unique notion of relativistic
center of mass. If we use only the Poincare’ generators of the N-particle system, it is
possible to define only three such notions: a canonical non-covariant Newton–Wigner-like
3-center of mass [8, 11, 12], a non-canonical non-covariant Møller 3-center of energy [9]
and a non-canonical covariant Fokker–Pryce 3-center of inertia [10, 11]. Each of these
then has to be extended to 4-centers (x̃µ, Rµ, Yµ, respectively). As shown in [2] a full
understanding of these topics has been obtained in the framework of the Wigner-covariant
rest-frame instant form of dynamics, developed in [22, 23] and explained in the following
subsection. This instant form is a special case of parametrized Minkowski theories
[20, 22], an approach developed to give a formulation of the N-body problem on arbitrary
simultaneity 3-surfaces (corresponding to a convention for the synchronization of distant
clocks [19]). In this way both the unknown closed form of first class constraints and the
special choices of gauge fixings leading to second class ones are avoided. Moreover, the

1 The symbol ≈ 0 (weakly equal to zero) means that the constraint has been used to get the equality. Let us remember
that the constraints can be imposed only after the Poisson brackets are evaluated.
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change of clock synchronization convention may be formulated as a gauge transformation
not altering the physics, and there is no problem in introducing the electro-magnetic field
when the particles are charged. The rest-frame instant form corresponds to the gauge
choice of the 3+1 splitting whose simultaneity 3-surfaces are the intrinsic rest frame of
the given configuration of the isolated system. For more details, see appendix B of [3].

(c) The identification of special models suited to the relativistic bound state problem. The
model building [14, 22, 24–26] initially concentrated on the potentials in the energy
Hamiltonian, which governs the relative motion (the canonical non-covariant 4-center of
mass has free motion). The much harder problem to find the suitable potentials in the
Lorentz boosts [6], so that the global Poincare’ algebra is satisfied, was finally solved
in [27] for charged scalar particles interacting with a dynamical electro-magnetic field
(with Grassmann-valued electric charges to regularize the self-energies): in the sector of
configurations without an independent radiation field, the Darwin potential to all order
of 1/c2 appeared in the energy Hamiltonian and suitable related potentials in the boost
Hamiltonians. In [28] analogous results (involving the Salpeter potential) were obtained
for charged spinning particles (with Grassmann-valued spins implying Dirac spin-1/2
fermions after quantization). There are other approaches, not coming down from quantum
field theory through instantaneous approximations to the Bethe–Salpeter equation, that
arrive at Darwin Hamiltonians through 1/c2 and 1/c4 orders [29–32]: they do not use
Grassmann-valued electric charges, but have a dependence on higher accelerations and
need some regularization of the self-energies.

2.1. The inertial rest-frame instant form of dynamics

In the rest-frame instant form of dynamics, Minkowski spacetime2 is foliated with inertial
hyper-planes (simultaneity 3-surfaces called Wigner hyper-planes) orthogonal to the constant
4-velocity uµ = P µ/M, u2 = 1, of a special inertial observer; it can be shown [21, 22] that
the 4-momentum P µ, canonically conjugate to the canonical non-covariant 4-center of mass
x̃µ, is weakly equal to the conserved 4-momentum P

µ
sys of the 2-particle system (M =

√
P 2

sys
is the invariant mass). The observer-dependent 4-coordinates (τ ; �σ) are the proper time τ

of this observer and 3-coordinates on the Wigner hyper-planes having the observer as origin
�σ = 0 for every τ .

Therefore, the Wigner hyperplane �τ at time τ is the intrinsic rest frame of the isolated
system at time τ . With respect to an arbitrary inertial frame, the Wigner hyper-planes are
described by the following embedding:

zµ(τ, �σ) = xµ
s (τ ) + εµ

r (u(P ))σ r , (1)

with x
µ
s (τ ) being the worldline of our arbitrary inertial observer. The space-like 4-vectors

ε
µ
r (u(P )) together with the time-like one ε

µ
o (u(P )) are the columns of the standard Wigner

boost for time-like Poincare’ orbits that sends the time-like 4-vector P µ to its rest-frame form
P̊ µ =

√
P 2(1; �0):

εµ
o (u(P )) = uµ(P ) = P µ/

√
P 2, εµ

r (u(P )) =
(

−ur(P ); δi
r − ui(P )ur(P )

1 + uo(P )

)
. (2)

Since we are in the rest frame, we have τ ≡ Ts = u(P ) · x̃ = u(P ) · xs as the scalar rest
time of the inertial observer, whose worldline is given by

xµ
s (τ ) = xµ(0) + uµ(P )τ. (3)

2 We use the metric ηµν = (+ − −−).
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In the rest-frame instant form the particles’ 4-coordinates, describing their worldlines,
and the associated momenta are

x
µ

i (τ ) = zµ(τ, �ηi(τ )) = xµ
s (τ ) + εµ

r (u(P ))ηr
i (τ ),

p
µ

i (τ ) =
√

m2
i + �κ2

i (τ )uµ(P ) + εµ
r (u(P ))κir (τ ) ⇒ p2

i = m2
i , i = 1, 2.

(4)

The momenta p
µ

i (τ ) are suitable solutions of the mass-shell constraints; in this approach,
all the first class constraints have been solved explicitly to determine the single particle
energies. As a consequence, each particle must have a definite sign of the energy (we only
consider positive energies). The total system momentum is

P µ
sys = p

µ

1 (τ ) + p
µ

2 (τ ) = P µ + εµ
r (u(P ))(κ1r (τ ) + κ2r (τ )) ≈ P µ,

P µ = (√
m2

1 + �κ2
1 (τ ) +

√
m2

2 + �κ2
2 (τ )

)
uµ(P ).

(5)

As we see from this and equation (2), P µ coincides with the conserved 4-momentum
P

µ
sys of the 2-particle system in its rest frame, defined by the three first class constraints

�p = ∑
i �κi ≈ 0.

This shows that inside the Wigner hyper-planes, the two particles are described by the 12
Wigner spin-1 3-vectors �ηi(τ ), �κi(τ ) as independent canonical variables

[{
ηr

i (τ ), κjs(τ )
} =

δij δ
r
s ,
{
ηr

i (τ ), ηs
j (τ )

} = {κir (τ ), κjs(τ )} = 0
]
. To them we must add P µ = p

µ

1 + p
µ

2 and a
canonically conjugate collective variable x̃µ, the external canonical non-covariant 4-center of
mass (M =

√
P 2)[2] given by

x̃µ(τ ) = (x̃o(τ ); �̃x(τ)) = zµ(τ, �̃σ)

= xµ
s (τ ) − 1

M(P o + M)

[
PνS

νµ + M

(
Soµ − Soν PνP

µ

M2

)]
,

{x̃µ, P ν} = −ηµν,

Sµν = [
uµ(P )εν

r (u(P )) − uν(P )εµ
r (u(P ))

]
S̄or + εµ

r (u(P ))εν
s (u(P ))S̄rs ,

S̄rs ≡ (
ηr

1κ
s
1 − ηs

1κ
r
1 + ηr

2κ
s
2 − ηs

2κ
r
2

) = εrst jt ,

S̄or ≡ −ηr
1

√
m2

1 + �κ2
1 − ηr

2

√
m2

2 + �κ2
2 = kr .

(6)

The point with coordinates x̃µ(τ ) is the decoupled canonical external 4-center of mass
(at the non-relativistic level, it is the free center of mass �x with Hamiltonian Hcom = �p2

2m
),

playing the role of a kinematical external 4-center of mass and of a decoupled observer with
his parametrized clock (point particle clock). It describes the decoupled collective degrees of
freedom of the isolated system.

An important feature of the rest-frame instant form is that it separates the relativistic
center of mass from the relative motion by means of a splitting of the description of the
isolated system into an external one and an internal one.

(a) The external description of the isolated system as a point particle clock is concerned with
the embedding of the Wigner hyper-planes into Minkowski spacetime from the point of
view of our generic inertial observer. There is an external realization of the Poincare’
algebra, which governs the covariance properties of Wigner hyper-planes under Poincare’
transformations (
, a). It can be shown [2] that its generators have the following form
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[M =
√

P 2, while l, m... are Euclidean indices; r, s... are Wigner spin-1 indices; S̃µν is
given in equation (6)]

P µ, Jµν = xµ
s P ν − xν

s P µ + Sµν = x̃µP ν − x̃νP µ + S̃µν,

P o =
√

M2 + �P 2,

J lm = x̃lP m − x̃mP l + δlrδmsεrsuS̄u,

Kl = J ol = x̃oP l − x̃l
√

M2 + �P 2 − δlrP sεrsuS̄u

M +
√

M2 + �P 2
,

{P µ, P ν} = 0, {P µ, J αβ} = ηµαP β − ηµβJ α,

{Jµν, J αβ} = ηµαJ νβ − ηµβJ να − ηναJµβ + ηνβJµα.

(7)

Note that both L̃µν = x̃µP ν − x̃νP µ and S̃µν are conserved.
Let us remark that this realization is universal in the sense that it depends on the nature

of the isolated system only through the invariant mass M (which in turn depends on the
relative variables and on the type of interaction).

(b) The internal description concerns the relative degrees of freedom of the isolated system
inside the Wigner hyper-plane (replacing the absolute Newtonian Euclidean 3-space
containing the isolated system). In order not to have a double counting of the center-of-
mass degrees of freedom there is the rest-frame condition, which implies the existence
of the three first class constraints on the internal 3-momentum �p = �κ1 + �κ2 ≈ 0.3 This
implies that a collective 3-variable (the internal 3-center of mass) inside each Wigner
hyper-plane can be eliminated, so that only six internal relative canonical variables are
independent. Since the spin tensor S̄AB satisfies a Lorentz algebra we can build an
unfaithful internal realization (in the sense that some of the generators weakly vanish) of
the Poincaré algebra, acting inside the Wigner hyperplane, whose generators are [2]

M = pτ =
√

m2
1 + �κ2

1 +
√

m2
2 + �κ2

2 , �p = �κ1 + �κ2(≈0),

�j = �η1 × �κ2, j r = S̄r = 1

2
εruvS̄uv,

�k = −
√

m2
1 + �κ2

1 �η1 −
√

m2
2 + �κ2

2 �η2, kr = jor = S̄or .

(8)

They satisfy the Poincare’ algebra (like the external ones)

[pτ , p]=0 = [pl, pm], [pl, km] = δlmpτ , [pτ , k]=[pτ , j] =0,

[jl, jm] = εlmnjn, [jl, km] = εlmnkn, [kl, km] = −εlmnjn.
(9)

The Poisson brackets [pl, km] = δlmpτ show clearly that for the interacting case, the
presence of interaction potentials in the invariant mass pτ = M requires the presence of
potentials in the boost generators ki.

As shown in [2, 22], the natural gauge fixings to be added to the rest-frame constraints
�p ≈ 0 are the vanishing of the internal boosts �k ≈ 0. It implies the uniqueness of the
collective 4-velocity ẋ

µ
s (τ ) = ˙̃x

µ
(τ) = uµ(P ), so that there is no classical zitterbewegung in

the associated worldlines. Moreover, it can be shown that the inertial observer x
µ
s (τ ) can be

identified with the covariant Fokker–Pryce center of inertia Yµ.
As a consequence of equations (4) and (6), in the rest-frame instant form the standard 16

variables x
µ

1 , p
µ

1 , x
µ

2 , p
µ

2 are re-expressed in terms of the 8 variables x
µ
s (or x̃µ), P µ = Muµ(P )

and the 12 variables �η1, �κ1, �η2, �κ2 restricted by the rest-frame condition �p = �κ1 + �κ2 ≈ 0 and

3 In the non-relativistic limit, we get the standard description with �ηi = �xi , �κi = �pi in the Newtonian rest frame
�p ≈ 0.
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gauge condition �k ≈ 0. (Note that �p is distinct from the spatial component of �P .) Therefore
we have 8+12− 6 = 14 variables, the lacking 2 variables to arrive at 16 are the relative time
(which vanishes due to the clock synchronization) and relative energy (vanishing because, as
shown in equations (4), the particles are on mass shell).

In [27] we found the generators for a system of N-interacting Grassmann charged particles
and electro-magnetic fields. The internal Hamiltonian and boosts have the following form for
N = 2 [c(�σ) = −1/4π |�σ |]
M =

√
m2

1 + (�κ1(τ ) − Q1 �A⊥(τ, �η1(τ )))2 +
√

m2
2 + (�κ2(τ ) − Q2 �A⊥(τ, �η2(τ )))2

+
Q1Q2

4π | �η1(τ ) − �η2(τ ) | +
∫

d3σ
1

2

[ �E2
⊥ + �B2

]
(τ, �σ),

kr = −
2∑

i=1

ηr
i (τ )

√
m2

i + (�κi(τ ) − Qi
�A⊥(τ, �ηi(τ )))2

+
2∑

i=1

[
Q1Q2

∑
i �=j

(
1

∇�ηj

∂

∂ηr
j

c(�ηi(τ ) − �ηj (τ )) − ηr
j (τ )c(�ηi(τ ) − �ηj (τ ))

)

+ Qi

∫
d3σEr

⊥(τ, �σ)c(�σ − �ηi(τ ))

]
− 1

2

∫
d3σσ r

[ �E2
⊥ + �B2

]
(τ, �σ), (10)

In the sector without independent radiation field it can be shown [27] that the Coulomb
potential is replaced by the classical Darwin potential. Let us remark that starting from
classical electrodynamics we arrive at a Coulomb potential additive to the square roots, and
not living inside them like in the toy model at the end of appendix A, whose rest-frame instant
form will be studied in section 4.

2.2. The problem of the relativistic center of mass

As shown in [2], given an isolated system with an associated realization of the Poincare’
algebra, only three notions of collective 3-variables (coinciding only in the rest frame) can
be built in term of them (namely without introducing external variables). This is done by
using the group theoretical methods of [6]. They are (i) a canonical non-covariant center
of mass (or center of spin); it is the classical analogue [11, 12] of the Newton–Wigner
position operator [8], (ii) a non-canonical non-covariant Møller center of energy [9] (it is
the non-relativistic prescription with the particle energies replacing their masses) and (iii) a
non-canonical covariant Fokker–Pryce center of inertia [10, 11], leading to a 4-vector defining
a frame-independent worldline.

However, none of these candidates for the relativistic center of mass has all the properties
of the non-relativistic center of mass. Since in the rest-frame instant form of dynamics we
have both an internal and an external realization of the Poincare’ algebra, there will be three
internal collective 3-variables (they are gauge variables to be eliminated by �k ≈ 0) and three
external collective 3-variables (to be extended to suitable collective 4-variables).

The canonical (Wigner spin-1) internal 3-center of mass (or center of spin) �q+ is

�q+ = −
�k√

M2 − �p2
+

�j × �p√
M2 − �p2(M +

√
M2 − �p2)

+
�k · �p�p

M
√

M2 − �p2
(
M +

√
M2 − �p2

) ≈ −
�k√

M2 − �p2
,
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M =
√

m2
1 + �κ2

1 +
√

m2
2 + �κ2

2 ,

�k = −
√

m2
1 + �κ2

1 �η1 −
√

m2
2 + �κ2

2 �η2,

{�q+,M} = �p
M

,
{
qr

+, q
s
+

} = 0,
{
qr

+, p
s
} = δrs, (11)

�Sq = �j − �q+ × �p = M�j√
M2 − �p2

+
�k × �p√
M2 − �p2

−
�j · �p�p√

M2 − �p2(M +
√

M2 − �p2)
≈ �̄S = �j,

{�Sq, �p} = {�Sq, �q+} = 0,
{
Sr

q, S
s
q

} = εrsuSu
q . (12)

Note that in the non-relativistic limit, �q+ tends weakly to the non-relativistic center of
mass �qnr = m1�ηi+m2�η2

m1+m2
. Moreover, the rest-frame conditions �p ≈ 0 imply that the internal

Møller 3-center of energy and the internal Fokker–Pryce 3-center of inertia weakly coincide
with �q+. The natural gauge fixings �k ≈ 0 imply �q+ ≈ 0, so that the only non-zero generators
of the internal Poincare’ algebra are M and �j = �̄S containing all the information about
the isolated system and generate the dynamical U(2) algebra of [33]. As is evident from
equations (7), the external Poincare’ generators also depend only on the generators of this
U(2) algebra.

On the other hand, from the external realization of the Poincare’ algebra we get the
following external canonical center-of-mass 3-variable:

�qs = �̃x −
�P

P o
x̃o,

{
qr

s , q
s
s

} = 0. (13)

As shown in [2], the requirement that the relations τ ≡ Ts = u(P ) · xs holds on Wigner
hyper-planes allows us to extend the external collective 3-variable �qs to the external canonical
non-covariant 4-center of mass x̃µ (a frame-dependent pseudo-worldline, whose intersection
with the Wigner hyper-plane has 3-coordinate σ̃ r ) defined as

x̃µ = (x̃o; �̃x) =
(

x̃o; �qs +
�p
po

x̃o

)
≡ xµ

s + εµ
u (u(P ))σ̃ u. (14)

See [2, 3] for the definition of the external Møller center of energy and Fokker–Pryce
center of inertia. The three external collective 4-variables have the same 4-velocity and
coincide in the Lorentz rest frame where P̊ µ = M(1; �0)

Since we are in an instant form of dynamics, in the presence of interactions among
the constituents of the isolated system only the internal generators M and �k will contain the
interaction potentials, M 	→ M(int), �k 	→ �k(int), but only those inside M(int) contribute to the
external Poincare’ (and U(2)) algebra. Instead, as shown in section 4, the potentials inside �k(int)

contribute to the elimination of the internal 3-centers by means of the gauge fixings �k(int) ≈ 0.

2.3. The canonical transformation to relative variables

From the previous discussion it is clear that in the rest-frame instant form the 2-body problem
in the free case is described by the 20 canonical variables x̃µ, P µ, �η1, �κ1, �η2, �κ2, restricted

by the six conditions �p ≈ 0, �q+ ≈ 0 and with P µ = Muµ(P ),M =
√

m2
1 + �κ2

1 +
√

m2
2 + �κ2

2

and τ ≡ Ts = u(P ) · x̃. There are only 12 independent canonical variables like in the
non-relativistic case.
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We now have to find the canonical transformation

�p ≈ 0, �q+ ≈ 0, (15)

defining the six relativistic relative variables �ρq, �πq , so that the spin (barycentric angular
momentum) becomes �Sq = �ρq × �πq . Let us stress that this cannot be a point transformation,
because of the momentum dependence of the relativistic internal center of mass �q+.

Since �q+ and �p are known from equations (11) and (8) respectively, we have only to find
the internal conjugate variables appearing in the canonical transformation (15). They have
been determined in [2] by using the technique (the Gartenhaus–Schwarz transformation) of
[34] and starting from a set of canonical variables defined in [22]. In terms of the naive
internal center-of-mass variable �η+ = 1

2 (�η1+�η2), we defined relative variables �ρ, �π based on
the following family of point canonical transformations:

�η1 = �η+ + 1
2 �ρ, �η2 = �η+ − 1

2 �ρ, �κ1 = 1
2 �p + �π, �κ2 = 1

2 �p − �π,

�η+ = 1
2 (�η1+�η2), �p = �κ1 + �κ2 ≈ 0, �ρ = �η1 − �η2, �π = 1

2 (�κ1 − �κ2),{
ηr

i , κ
s
j

} = δij δ
rs,

{
ηr

+, p
s
} = δrs, {ρr, πs} = δrs . (16)

The closed form of the canonical transformation (15) for arbitrary N was given in terms
of ρ and π in appendix B of [35]. The transformation is point in the momenta but, unlike the
non-relativistic case, non-point in the configurational variables. Explicitly, we have for N = 2

M =
√

m2
1 + �κ2

1 +
√

m2
2 + �κ2

2 , �Sq = �ρq × �πq,

�q+ =
√

m2
1 + �κ2

1 �η1 +
√

m2
2 + �κ2

2 �η2√
M2 − �p2

+
(�η1 × �κ1 + �η2 × �κ2) × �p√
M2 − �p2(M +

√
M2 − �p2)

−
(√

m2
1 + �κ2

1 �η1 +
√

m2
2 + �κ2

2 �η2
) · �p�p

M
√

M2 − �p2
(
M +

√
M2 − �p2

) ,

�p = �κ1 + �κ2 ≈ 0,

�πq = �π − �p√
M2 − �p2

[
1

2

(√
m2

1 + �κ2
1 −

√
m2

2 + �κ2
2

)

− �p · �π
�p2

(
M −

√
M2 − �p2

)] ≈ �π = 1

2
(�κ1 − �κ2),

�ρq = �ρ +



√

m2
1 + �κ2

1√
m2

2 + �π2
q

+

√
m2

2 + �κ2
2√

m2
1 + �π2

q


 �p · �ρ �πq

M
√

M2 − �p2
≈ �ρ = �η1 − �η2,

⇒ M =
√
M2 + �p2 ≈ M =

√
m2

1 + �π2
q +

√
m2

2 + �π2
q ,

�q+ ≈
�η1

√
m2

1 + �π2 + �η2

√
m2

2 + �π2

M
. (17)
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The inverse canonical transformation is (i = 1, 2)

�ηi = �q+ −
�Sq × �p√

M2 + �p2
(
M +

√
M2 +�p2

) +
1

2

[
(−1)i+1 − 2M�πq · �p +

(
m2

1 − m2
2

)√
M2 + �p2

M2
√
M2 + �p2

]
,


�ρq − �ρq · �p �πq

M
√
M2 + �p2

(√m2
1+�κ2

1√
m2

2+�π2
q

+
√

m2
2+�κ2

2√
m2

1+�π2
q

)−1
+ �πq · �p




≈ �q+ +
1

2

[
(−1)i+1 − m2

1 − m2
2

M2

]
�ρq ≈ 1

2

[
(−1)i+1 − m2

1 − m2
2

M2

]
�ρ,

�κi =
[

1

2
+

(−1)i+1

M
√
M2 + �p2

(
�πq · �p

[
1 − M

�p2

(√
M2 + �p2 − M

)]

+
(
m2

1 − m2
2

)√
M2 + �p2

)]
�p + (−1)i+1 �πq ≈ (−1)i+1 �πq ≈ (−)i+1 �π,

⇒ �κ2
i ≈ �π2. (18)

In equations (18), we used explicitly the gauge fixing �q+ ≈ 0.
As shown in [22, 36] and their bibliography, a-a-a-d interactions inside the Wigner

hyperplane may be introduced either under (scalar and vector potentials) or outside (scalar
potential like the Coulomb one) the square roots appearing in the free Hamiltonian. Since a
Lagrangian density in the presence of action-at-a-distance mutual interactions is not known
and since we are working in an instant form of dynamics, the potentials in the constraints
restricted to hyper-planes must be introduced by hand (see, however, [27] for their evaluation
starting from the Lagrangian density for the electro-magnetic interaction). The only restriction
is that the Poisson brackets of the modified constraints’ generators must generate the same
algebra of the free ones.

In the rest-frame instant form, the most general two-body Hamiltonian with action-at-a-
distance interactions is

M(int) =
√

m2
1 + U1 + [�κ1 − �V1]2 +

√
m2

2 + U2 + [�κ2 − �V2]2 + V, (19)

where Ui = Ui(�κ1, �κ2, �η1−�η2), �Vi = �Vi(�κj �=i , �η1−�η2), V = Vo(|�η1−�η2|)+V ′(�κ1, �κ2, �η1−�η2).
If we use the canonical transformation (15) defining the relativistic canonical internal

3-center of mass (now �q(int)
+ is interaction dependent) and relative variables on the Wigner

hyperplane, together with the rest-frame conditions �p ≈ 0, the rest-frame Hamiltonian for the
relative motion becomes

M(int) ≈
√

m2
1 + Ũ1 + [�πq − �̃V 1]2 +

√
m2

2 + Ũ2 + [−�πq − �̃V 2]2 + Ṽ , (20)

where

Ũi = Ui(�πq, �ρq), Ṽ = Vo(|�ρq |) + V ′(�πq, �ρq),

�̃V 1 = �V1(−�πq, �ρq), �̃V 2 = �V2(�πq, �ρq).
(21)

In order to build a realization of the internal Poincare’ group, besides M(int) we need
to know the potentials appearing in the internal boosts �k(int) (being an instant form, �p ≈ 0
and �j are interaction-independent generators). Since the 3-center �q+ becomes interaction
dependent, the final canonical basis �q+, �p, �ρq, �πq is not explicitly known in the interacting case.
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For an isolated system, however, we have M =
√
M2 + �p2 ≈ M with M independent of

�q+ ({M, �p} = 0 in the internal Poincare’ algebra). This suggests that the same result should
hold true even in the interacting case. Indeed, by its definition, the Gartenhaus–Schwartz
transformation [2, 34] gives �ρq ≈ �ρ, �πq ≈ �π also in presence of interactions, so that we get

M(int)|�p=0 = (√
m2

1 + U1 + (�κ1 − �V1)2 +
√

m2
2 + U2 + (�κ2 − �V2)2 + V

)∣∣
�p=0

=
√
M2

(int) + �p2|�p=0 = M(int)|�p=0

=
√

m2
1 + Ũ1 + (�κ1 − �̃V 1)2 +

√
m2

2 + Ũ2 + (�κ2 − �̃V 2)2 + Ṽ , (22)

where the potentials Ũi,
�̃V i, Ṽ are now functions of �π2

q , �πq · �ρq, �ρ2
q respectively.

Unlike in the non-relativistic case, the canonical transformation (17) becomes interaction
dependent (not even a point transformation in the momenta), since �q+ is determined by a set
of Poincare’ generators depending on the interactions. The only thing to do in the generic
situation is therefore to use the free relative variables (17) even in the interacting case. We
cannot impose anymore, however, the natural gauge fixings �q+ ≈ 0 (�k ≈ 0) of the free case,
since it is replaced by �q(int)

+ ≈ 0 (namely by �k(int) ≈ 0). Once written in terms of the canonical
variables (17) of the free case, the equations �k(int) ≈ 0 can be solved for �q+, which takes a
form �q+ ≈ �f (�ρaq, �πaq) as a consequence of the potentials appearing in the boosts. Therefore,
the reconstruction of the relativistic orbit by means of equations (18) in terms of the relative
motion is given by

�ηi(τ ) ≈ �q+(�ρq, �πq) +
1

2

[
(−)i+1 − m2

1 − m2
2

M2

]
�ρq → c→∞

1

2

[
(−)i+1 − m1 − m2

m

]
�ρq,

�κi(τ ) ≈ (−)i+1 �πq(τ),

⇓
x

µ

i (τ ) = zµ
wigner(τ, �ηi(τ )) = uµ(P )τ + εµ

r (u(P ))ηr
i (τ ),

p
µ

i (τ ) =
√

m2
i + �κ2

i (τ )uµ(P ) + εµ
r (P )κir (τ ). (23)

While the potentials in M(int) determine �ρq(τ ) and �πq(τ) through the Hamilton equations,
the potentials in �k(int) determine �q+(�ρq, �πq). It is seen, therefore—as should be expected—that
the relativistic theory of orbits is much more complicated than in the non-relativistic case,
where the absolute orbits �ηi(t) are proportional to the relative orbit �ρq(t) in the rest frame.

3. A simple 2-particle model with a-a-a-d interaction

Instead of the physically more relevant but complicated system of [27], whose internal
Hamiltonian and boosts in the rest-frame instant form are given in equation (10), let us
study a simpler two-body system with an a-a-a-d interaction, defined at the end of appendix
A in terms of two first class constraints. As we shall see, its treatment in the constraint
formalism leads to a realization of the Poincare’ algebra only in the rest frame. Therefore, let
us look at its reformulation in the rest-frame instant form, where the rest-frame conditions are
automatically contained.
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In the rest-frame instant form, we may define the model by making the ansatz that the
free generators of the internal realization of the Poincare’ algebra given in equation (15) have
the interaction forms

M(int) =
√

m2
1 + �κ2

1 + �(�ρ2) +
√

m2
2 + �κ2

2 + �(�ρ2),

�p = �κ1 + �κ2,

�j = �η1 × �κ1 + �η2 × �κ2,

�k(int) = −�η1

√
m2

1 + �κ2
1 + �(�ρ2) − �η2

√
m2

2 + �κ2
2 + �(�ρ2),

(24)

where �ρ = �η1 − �η2. Let us verify this ansatz by checking whether these generators satisfy the
Poincare’ algebra.

It is self-evident that one has

[ji, jj ] = εijkjk, [ji, k(int)j ] = εijkk(int)k. (25)

We examine the other Poincare’ brackets. First, note that

[pi, k(int)j ] = [
κ1i + κ2i ,−η1j

√
m2

1 + �κ2
1 + �(�ρ2) − η2j

√
m2

2 + �κ2
2 + �(�ρ2)

]
= δijM(int). (26)

Next, examine
[
�′(x) = d�(x)

dx

]
[M(int), k(int)i] = [√

m2
1 + �κ2

1 + �(�ρ2) +
√

m2
2 + �κ2

2 + �(�ρ2),

− η1i

√
m2

1 + �κ2
1 + �(�ρ2) − η2i

√
m2

2 + �κ2
2 + �(�ρ2)

]
= κ1i + κ2i − (η1i + η2i )

[√
m2

1 + �κ2
1 + �(�ρ2),

√
m2

2 + �κ2
2 + �(�ρ2)

]

= κ1i + κ2i − (η1i + η2i )


− 2�′(�η2)�ρ√

m2
1 + �κ2

1 + �(�ρ2)

· �κ1 + �κ2√
m2

2 + �κ2
2 + �(�ρ2)


 . (27)

But the rest-frame condition �p ≈ 0 implies

[M(int), �k(int)] ≈ 0 ≈ �p. (28)

The remaining crucial bracket is

[k(int)i , k(int)j ] = [− η1i

√
m2

1 + �κ2
1 + �(�ρ2) − η2i

√
m2

2 + �κ2
2 + �(�ρ2),

− η1j

√
m2

1 + �κ2
1 + �(�ρ2) − η2j

√
m2

2 + �κ2
2 + �(�ρ2)

]
= η1j κ1i − η1iκ1j + η2j κ2i − η2iκ2j

− η1iη2j

2�′(�ρ2)�ρ · (�κ1 + �κ2)√
m2

1 + �κ2
1 + �(�ρ2)

√
m2

2 + �κ2
2 + �(�ρ2)

+ η2iη1j

2�′(�ρ2)�ρ · (�κ1 + �κ2)√
m2

1 + �κ2
1 + �(�ρ2)

√
m2

2 + �κ2
2 + �(�ρ2)

. (29)

Again, the rest-frame condition implies

[k(int)i , k(int)j ] ≈ η1j κ1i − η1iκ1j + η2j κ2i − η2iκ2j

= −εijkεklm(η1lκ1m + η2lκ2m) = −εijkjk. (30)
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From equation (12), the interacting form of the canonical internal 3-center of mass is
weakly equal to the 3-center of energy due to the rest-frame condition �p ≈ 0

�q+ ≈ −
�k(int)

M(int)
. (31)

Using the canonical transformations to relative variables given in equations (17), (18) (as
well as equation (A.26) in appendix A) implies the following forms of �k(int) and M(int):

�k(int) ≈ −�η1

√
m2

1 + �π2 + �(�ρ2) − �η2

√
m2

2 + �π2 + �(�ρ2),

M(int) ≈
√

m2
1 + �π2 + �(�ρ2) +

√
m2

2 + �π2 + �(�ρ2) = M(int).

(32)

With M =
√

m2
1 + �π2 +

√
m2

2 + �π2, the canonical transformations in equations (18) in terms
of free particle variables imply

�η1 ≈ �q+ +
1

2

(
1 − m2

1 − m2
2

M2

)
�ρ, �η2 ≈ �q+ − 1

2

(
1 +

m2
1 − m2

2

M2

)
�ρ, (33)

and also √
m2

1 + �π2 = 1

2
(M + �) = M

2

(
1 +

m2
1 − m2

2

M2

)
,

√
m2

2 + �π2 = 1

2
(M − �) = M

2

(
1 − m2

1 − m2
2

M2

)
,

(34)

where � =
√

m2
1 + �π2 −

√
m2

2 + �π2,M� = m2
1 − m2

2. Therefore, we have the following
expression for the 3-coordinates �ηi :

�η1 ≈ �q+ +
1

2

(
1 − m2

1 − m2
2

M2

)
�ρ = �q+ +

√
m2

2 + �π2

M
�ρ,

�η2 ≈ �q+ − 1

2

(
1 +

m2
1 − m2

2

M2

)
�ρ = �q+ −

√
m2

1 + �π2

M
�ρ.

(35)

If we use the canonical basis �q+, �p ≈ 0, �ρ, �π of the free case defined in equation (17)
also in our simple interacting case, equations (35) must be replaced by equations (23). To this
end we must find the functions �q+(�ρ, �π) from the gauge conditions �q(int)

+ ≈ 0, namely from
�k(int) ≈ 0.

In our simple interacting case, substituting (35) into (32) and using equation (31) we get

−M(int)�q(int)
+ ≈ �k(int)

≈ −�q+
[√

m2
1 + �π2 + �(�ρ2) +

√
m2

2 + �π2 + �(�ρ2)
]

− �ρ
√

m2
2 + �π2

√
m2

1 + �π2 + �(�ρ2) −
√

m2
1 + �π2

√
m2

2 + �π2 + �(�ρ2)

M
. (36)

If, in analogy to the free case, we define �(int) =
√

m2
1 + �π2 + �(�ρ2)−

√
m2

2 + �π2 + �(�ρ2),
we have M(int)�(int) = m2

1 − m2
2 and we get
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√
m2

1 + �π2 + �(�ρ2) = 1

2
(M(int) + �(int)) = M(int)

2

(
1 +

m2
1 − m2

2

M2
(int)

)
,

√
m2

2 + �π2 + �(�ρ2) = 1

2
(M(int) − �(int)) = M(int)

2

(
1 − m2

1 − m2
2

M2
(int)

)
.

⇓

M =
2∑

i=1

√
m2

i + �π2 =

√√√√[M(int)

2

(
1 +

m2
1 − m2

2

M2
(int)

)]2

− �(�ρ2)

+

√√√√[M(int)

2

(
1 − m2

1 − m2
2

M2
(int)

)]2

− �(�ρ2). (37)

As a consequence, equation (36) may be written in the form

�k(int) ≈ −M(int)


�q+ + �ρ

(√
m2

2 + �π2 −
√

m2
1 + �π2

)
+
(√

m2
2 + �π2 +

√
m2

1 + �π2
)m2

1−m2
2

M2
(int)

2M




= −M(int)�q+ +
m2

1 − m2
2

2

(
M(int)

M2
− 1

M(int)

)
�ρ. (38)

Therefore the gauge fixing condition �q(int)
+ ≈ 0, or �k(int) ≈ 0, gives

�q+ ≈ �q+(�ρ, �π) = m2
1 − m2

2

2

(
1

M2
− 1

M2
(int)

)
�ρ, (39)

so that, by using the inverse canonical transformation (18), in our simple interacting case we
get the following reconstruction of the 3-coordinates �ηi and of the 4-coordinates x

µ

i :

�η1 ≈ 1

2

(
1 − m2

1 − m2
2

M2
(int)

)
�ρ → c→∞

m2

m1 + m2
�ρ,

�η2 ≈ −1

2

(
1 +

m2
1 − m2

2

M2
(int)

)
�ρ → c→∞ − m1

m1 + m2
�ρ,

x
µ

i (τ ) = uµ(P )τ +
1

2


(−1)i+1 − m2

1 − m2
2∑2

j=1

√
m2

j + �π2 + �(�ρ2)


 εµ

r (P )ρr .

(40)

This completes the reconstruction of the relativistic orbits of the two particles.
We see that in the non-relativistic limit, we recover the standard result in the center of

mass frame �p = 0. This is equivalent to adding the first class constraints �p ≈ 0 to the
non-relativistic Hamiltonian Hcom and to fix the gauge by putting the non-relativistic center of
mass into the origin

�x = m1�η1 + m2�η2

m1 + m2
≈ 0. (41)

For our simple interacting relativistic model, we get that the rest-frame 3-coordinates �ηi

are still proportional to the relative variable �ρ (for more complex models, there could be a
component along �π coming from the function �q+(�ρ, �π)). However, instead of the numerical
proportionality constants of the non-relativistic case, we have a non-trivial dependence on the

total constant fixed c.m. energy
(
M(int) =

√
m2

1 + �π2 + �(�ρ2) +
√

m2
2 + �π2 + �(�ρ2)

)
.
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4. Evaluation of the orbits in the simple relativistic two-body problem with a
Coulomb-like potential

For illustrative purposes, we make the following choice for the a-a-a-d potential �:

�(�ρ2) = −2µ
e2

ρ
, ρ =

√
�ρ2. (42)

This Coulomb-like potential is not to be confused with the real Coulomb potential between
charged particles, which is outside the square roots as shown in equation (10) and which
produces completely different relativistic orbits. However, both models may have the same
non-relativistic limit for suitable choices of the parameters.

The invariant mass M(int) of the two-body model (the Hamiltonian of its relative motion)
in the rest-frame instant form is

M(int) ≈ M(int) =
√

m2
1 + �π2 − 2µ

e2

ρ
+

√
m2

2 + �π2 − 2µ
e2

ρ
. (43)

Instead of studying the Hamilton equations for �ρ, �π with M(int) as the Hamiltonian, we
will find the orbits using Hamilton–Jacobi methods4. Since the potential is a central one, our
orbit is confined to a plane with

�π2 = π2
ρ +

π2
φ

ρ2
. (44)

Since both the time and the angle are cyclic, the generating function is

S = W1(ρ) + αφφ − wt ≡ W1(ρ, φ) − wt, (45)

with w the invariant total c.m. energy. The Hamilton–Jacobi equation is√(
∂W1

∂ρ

)2

+
α2

φ

ρ2
+ m2

1 − 2µ
e2

ρ
+

√(
∂W1

∂ρ

)2

+
α2

φ

ρ2
+ m2

2 − 2µ
e2

ρ
= w. (46)

This leads to (the function b2(w) is defined in equation (A.19) of appendix A)(
∂W1

∂ρ

)2

+
α2

φ

ρ2
− 2µ

e2

ρ
= b2(w), (47)

and so we get

W1(ρ, φ) =
∫

dρ

√
b2(w) − α2

φ

ρ2
+ 2µ

e2

ρ
+ αφφ. (48)

The new coordinate canonically conjugate to the new momentum αφ is the constant

β2 = ∂W

∂αφ

= −
∫

αφdρ

ρ2

√
b2(w) − α2

φ

ρ2 + 2µe2

ρ

+ φ. (49)

If we define

u = 1

ρ
, (50)

4 See [37] for the relativistic Kepler or Coulomb problem with respect to a fixed center and [38] for its use. Let us
remark that the techniques of [37] could be applied to the results of [27] to describe the relativistic Darwin two-body
problem. However, the internal boost �k satisfying {pi, kj } = δijM in the case of the pure Coulomb interaction

M =
√

m2
1 + �κ2 +

√
m2

2 + �κ2 + Q1Q2
4π |�η1−�η2| is not known.
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we get

β2 = ∂W

∂αφ

=
∫

αφdu√
b2(w) − α2

φu2 + 2µe2u
+ φ (51)

or

φ = β2 =
∫

du√
b2(w)

α2
φ

+ 2µe2u

α2
φ

− u2

. (52)

This result leads to the ellipse (we consider only bounded orbits)

1

ρ
= µe2

α2
φ


1 +

√
1 +

b2(w)α2
φ

µ2e2
cos(φ − β2)


 . (53)

Equations (52) and (53) allow us to determine the orbit of the relative motion

�ρ = ρ(cos φi + sin φj). (54)

Let us compare these results with the non-relativistic limit. In the non-relativistic Kepler
or Coulomb case [1], equation (53) is replaced by the following expression (E is the non-
relativistic energy):

1

ρ
= µe2

α2
φ


1 +

√
1 +

2Eα2
φ

µe2
cos(φ − β2)


 . (55)

If we use the non-relativistic limit into equations (40) for the relation among �ηi and �ρ, we get
the non-relativistic expressions

�η1 = α2
φ

m1e2

1[
1 +

√
1 +

2Eα2
φ

µe2 cos(φ − β2)
] (cos φi + sin φj),

�η2 = − α2
φ

m2e2

1[
1 +

√
1 +

2Eα2
φ

µe2 cos(φ − β2)
] (cos φi + sin φj).

(56)

For the relativistic counterparts, given in equation (40), we have from equations (37)

w = M(int) =
2∑

i=1

√
m2

i + �π2 − 2µ
e2

ρ
,

M =
√[

w

2

(
1 +

m2
1 − m2

2

w2

)]2

+ 2µ
e2

ρ

+

√[
w

2

(
1 − m2

1 − m2
2

w2

)]2

+ 2µ
e2

ρ
≡ M(w, ρ). (57)

In this case, from equations (40) we have

�η1 ≈ 1

2
ρ(cos φi + sin φj)

(
1 − m2

1 − m2
2

w2

)
,

�η2 ≈ −1

2
ρ(cos φi + sin φj)

(
1 +

m2
1 − m2

2

w2

)
,

(58)

where for ρ we have to use the solution given in equation (53).
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We have the following situations.

(1) For equal masses, the relativistic and non-relativistic expressions are identical with
b2(M(int)) 	→ 2µE .

(2) In the limit in which one of the masses becomes very great (say m2) then, since we have

m2
1 − m2

2

w2
→m2→∞ −1, (59)

the relativistic and non-relativistic expressions are also identical.
(3) If we introduce the new notation

w = m1 + m2√
ω

, (60)

then the relativistic orbits become

�η1 = 1

2
ρ(φ)(cos φi + sin φj)

(
1 − m1 − m2

m1 + m2
ω

)
,

�η2 = −1

2
ρ(φ)(cos φi + sin φj)

(
1 +

m1 − m2

m1 + m2
ω

)
.

(61)

Since ω is a constant of motion, the main difference between the relativistic and the
non-relativistic orbits is the proportionality constant between individual particle coordinates
and the relative coordinate, which, however, is now dependent on the invariant mass of the
system.

5. Conclusions

We have given a complete treatment of the Hamiltonian two-body problem in the rest-frame
instant form, arising from parametrized Minkowski theories when the dynamics is described
with respect to the inertial intrinsic rest frame of the isolated system with its simultaneity 3-
surfaces given by the Wigner hyper-planes. The existence of two realizations of the Poincare’
group (the external one and the unfaithful internal one inside the Wigner hyper-planes),
together with the clarification of the only three intrinsic notions of a center-of-mass-like
collective variable, allow us to solve all the kinematical problems and to define canonical
transformations for the separation of the center of mass from the relative motion as is possible
in Newtonian mechanics.

In the rest-frame instant form of dynamics there is a natural gauge fixing �k(int) ≈ 0 to
the rest-frame conditions �p ≈ 0, which allows us to completely clarify the determination of
the relativistic orbits inside the Wigner hyper-planes. With this gauge fixing it is possible to
describe the isolated system from the point of view of an inertial observer, whose worldline
x

µ
s (τ ) = uµ(P )τ is the (covariant non-canonical) Fokker–Pryce center of inertia. The simplest

model with the a-a-a-d interaction is studied in detail.
To reconstruct the actual trajectories in Minkowski spacetime in the above inertial frame,

we have to use equations (4)

x
µ

i (τ ) = uµ(P )τ + εµ
r (P )ηr

i (τ ),

p
µ

i (τ ) =
√

m2
i + �κ2

i (τ )uµ(P ) + εµ
r (P )κir (τ ).

(62)

To eliminate the momenta and to get a purely configurational description one should
invert the first half of the Hamilton equations, �̇ρ = {�ρ,M(int)}, to get �π in terms of �ρ and �̇ρ(
ḟ = df

dτ

)
.
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Under Lorentz transformations 
 generated by the external Poincare’ group, under which
we have ε

µ
r (u(
P )) = (R−1(
, P ))r

s
µ
νε

ν
s (u(P )) and η

′r
i = Rr

s(
, P )ηs
i , the derived

quantities x
µ

i and p
µ

i transform covariantly as 4-vectors5. However the worldlines x
µ

i (τ ) are
not canonical variables, because they depend on the (noncanonical) Fokker–Pryce center of
inertia. This, together with the non-covariance of the canonical center of mass x̃µ, is the way
out from the no-interaction theorem in the rest-frame instant form.

Having understood both the kinematical and dynamical problems of relativistic orbit
theory, the next step is to try to define a perturbation theory around relativistic orbits as has
been done in the non-relativistic case [1]: it could be relevant for the special relativistic
approximation of relativistic binaries in general relativity, till now treated only in the post-
Newtonian approximation [39].

Appendix A. Two-body relativistic Hamiltonian mechanics with two first-class
constraints

In constraint dynamics for classical relativistic spinless particles, one begins by introducing
compatible generalized mass-shell constraints. We work with constraints that involve
potentials that are independent of the relative momenta

(
P µ = p

µ

1 + p
µ

2 ,M =
√

P 2, rµ =
x

µ

1 − x
µ

2 ,
{
x

µ

i , pν
j

} = −δij η
µν
)

H1 = p2
1 − m2

1 − �1(r, P ) ≈ 0, H2 = p2
2 − m2

2 − �2(r, P ) ≈ 0. (A.1)

We call the scalars �i(r, P ) quasi-potentials (energy-dependent potentials that describe
deviations from the free mass-shell conditions p2

i − m2
i ≈ 0). Assuming that the model

derives from an unknown reparametrization invariant Lagrangian (so that the canonical
Hamiltonian vanishes), the Hamiltonian is defined in terms of the constraints only by

H = λ1(τ )H1 + λ2(τ )H2, (A.2)

in which λi are arbitrary Lagrange multipliers (called Dirac multipliers). The constraints
forming this Hamiltonian must be such that the time rate of change of the constraints vanishes
when the constraint is imposed. With the time rate of change of an arbitrary dynamical variable
f given by

df

dτ
= {f,H}, (A.3)

we get6

dH1

dτ
= {H1,H} = λ1(τ ){H1,H1} + λ2(τ ){H1,H2} ≈ λ2(τ ){H1,H2}, (A.4)

and similarly

dH2

dτ
≈ λ1(τ ){H2,H1}. (A.5)

5 Namely the rest-frame instant form satisfies the worldline condition, since its synchronization of clocks (the one-
to-one correlation between the worldlines) is a generalization of the gauge fixing P · (x1 − x2) ≈ 0 in models with
second class constraints, as shown in [14]. As a consequence, the worldlines have an objective existence. However, in
parametrized Minkowski theories one could choose different 3+1 splittings of Minkowski spacetimes corresponding
to different one-to-one correlations (different conventions for the synchronization of clocks). Since each 3+1 splitting
is equivalent to a different choice of the non-inertial frame [21] with its inertial forces (see appendix B of [3] for
the non-inertial rest frames), the new worldlines will be different (they are obtained from those in the rest-frame
instant form by means of a gauge transformation sending an inertial frame into a non-inertial one [22, 23]). This is
the interpretation of the so-called frame dependence of the worldlines quoted in [14], where it was connected to a
semantic problem.
6 The Dirac multipliers, being functions only of τ , have zero Poisson bracket with phase space functions.
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Thus, the constraints are constants (their time derivative weakly vanishes) provided that

{H1,H2} ≈ 0. (A.6)

This is called the compatibility condition. Thus, we must have

2p1{p1,�2} + 2p2{�1, p2} + {�1,�2} ≈ 0. (A.7)

We assume that the scalar functions �i depend on the following variables:

�i = �i

(
r2
⊥
2

,
r2
||
2

,M

)
, (A.8)

where

r
µ

|| = r · P

w2
P µ, r

µ

⊥ = rµ − r
µ

|| , P · r⊥ = 0. (A.9)

Thus, our compatibility condition becomes

−4p1 · r⊥
∂�2

∂r2
⊥

− 4p1 · r||
∂�2

∂r2
||

− 4p2 · r⊥
∂�1

∂r2
⊥

− 4p2 · r||
∂�1

∂r2
||

+ {�1,�2} ≈ 0. (A.10)

The simplest solution is

�1 = �2 = �

(
r2
⊥
2

,M

)
, (A.11)

because it implies the following strong satisfaction of the compatibility condition:

{H1,H2} = −4P · r⊥
∂�
( r2

⊥
2 ,M

)
∂r2

⊥
= 0. (A.12)

This is the original Droz-Vincent, Todorov, Komar model [16–18]. More general forms
of the functions �i are possible for which {H1,H2} ≈ 0, being proportional to the constraints
themselves.

We define the canonical relative momentum by

qµ = ε2p
µ

1 − ε1p
µ

2

M
, (A.13)

with

ε1 = M2 + m2
1 − m2

2

2M
, ε2 = M2 + m2

2 − m2
1

2M
. (A.14)

These constituent particle rest energies are defined so that

ε1 + ε2 = M, ε1 − ε2 = m2
1 − m2

2

M
. (A.15)

This definition is reinforced by

−p1 · P

M
= −P 2 + p2

2 − p2
1

2M
≈ ε1, −p2 · P

M
= −P 2 + p2

1 − p2
2

2M
≈ ε2, (A.16)

(see equation (A.18)). Using P µ = p
µ

1 + p
µ

2 and equation (A.13) gives

p
µ

1 = ε1P
µ

M
+ qµ, p

µ

2 = ε1P
µ

M
− qµ. (A.17)

In term of these variables, the difference of the constraints depends on the relative energy
in the rest frame

H1 − H2 = p2
1 + m2

1 − p2
2 − m2

2 = 2P · q ≈ 0, (A.18)
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where we have used

ε2
1 − m2

1 = ε2
2 − m2

2 = 1

4M2

(
M4 − 2

(
m2

1 + m2
2

)
M2 + (m2

1 − m2
2)

2
) ≡ b2(M). (A.19)

On the other hand, the sum of the two constraints determines the mass spectrum of the
two-body system. It can be written as

q2 + �

(
r2
⊥
2

,M

)
− b2(M) ≈ 0 (A.20)

or

�q2 + �

(�r2

2
,M

)
− b2(M) ≈ 0, (A.21)

in the rest frame (where qo ≈ 0 and r2
⊥ ≈ �r2). To get the mass spectrum, this equation has to

be solved for M =
√

P 2.
Since we have {xµ

i ,H1} �= 0, {xµ

i ,H2} �= 0, Droz-Vincent covariant non-canonical
positions [14, 16] q

µ

i are defined as the solutions of the two equations {qµ

1 ,H2} = 0 and
{qµ

2 ,H1} = 0.
If in equation (A.21) we consider a M-independent potential in the rest frame, we get that

the free expression

�q2 = 1

4M2

[
M4 − 2

(
m2

1 + m2
2

)
M2 +

(
m2

1 − m2
2

)2]
(A.22)

is modified to

�q2 + �

(
1

2
�r2

)
= 1

4M2

[
M4 − 2

(
m2

1 + m2
2

)
M2 +

(
m2

1 − m2
2

)2]
, (A.23)

which is the rest-frame form of a covariant two-body constraint dynamics [24] involving two
generalized mass-shell constraints of the form

p2
1 − m2

1 − � ≈ 0, p2
2 − m2

2 − � ≈ 0, (A.24)

with

� = 2µV

(
1

2
�r2

)
, µ = m1m2

m1 + m2
, (A.25)

i.e. a form suitable for the non-relativistic limit.
Solving equation (A.23) algebraically for M and choosing all positive square roots leads

to7

M =
√

m2
1 + �q2 + �

(
1

2
�r2

)
+

√
m2

2 + �q2 + �

(
1

2
�r2

)
. (A.26)

In section 3, the rest-frame instant form of this model is studied in detail. In particular, the
form of the generators of the internal Poincare’ group is given.

7 The choice of equation (A.13) for the relative momentum is the relativistic generalization of �q = (m2 �p1 −
m1 �p2)/(m1 + m2) = µd�r/dt . The alternative choice of qµ = (p

µ
1 − p

µ
2 )/2 would lead to the constraint

2P · q = m2
1 − m2

2 in place of equation (A.18). However it would lead to the same result, equation (A.23), for �q2

even for unequal mass since the relative energy is not zero for this choice of q unlike for that given in equation (A.13).
Hence, the expressions in equations (A.26) and (32) for the c.m. energy are the same with both choices of the relative
momentum.
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